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COMPUTER SIMULATIONS,                             
MATHEMATICS AND ECONOMICS 

by 
MAGDA FONTANA∗

1. Introduction 

Computer has profoundly affected the way economists do and think about 
economics (Mirowski, 2002, Duren, 1988, Galison, 1997). Not only it has 
relieved scholars from computational burden (originally, computers were 
persons hired to perform calculus), but it has also changed the mode in which 
economists approach their theories. By using simulations they are provided 
with metaphors of human thinking and problem solving, have the opportunity 
to subject social processes to laboratory experimentation and, finally, they are 
allowed to model economic agents in fashions that were precluded to 
mathematical and verbal modelling.  

The paper deals with the relationships between computer simulations and 
economics. I investigate how the possibility of embedding economic theories 
within computer programs, that is running a simulation, has affected the 
process of theory-making and has accompanied some developments of 
economic thought. To this purpose, I will proceed along two lines. First, I 
will try to characterise the concept of simulation by tracing its evolution and 
comparing it with other formal languages and modelling procedures. Second, 
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I will try to identify those developments of simulations that have mostly 
affected economics. The analysis covers a period that starts from post World 
War II to the present days, while the places of action are mainly the faculties 
of engineering of the major universities of the United States. It will appear 
how simulation, that generated from very practical concerns, will 
subsequently circulate in different disciplines − such as economics − and will 
become a theoretical instrument. The central tenet of the paper is that 
simulation is a way of conducting research that is autonomous − i.e. it has 
distinctive properties and a different ability in capturing the phenomena 
under study − with respect to other modelling solutions.  

2. The Origin and Evolution of Computer Simulation  

The philosopher Peter Galison reconstructs the steps through which 
computer simulations come to stage: “At first no more than a faster version of 
an electro-mechanical calculator, the computer became much more: a piece 
of the instrument, an instrument in its own right, and finally (through 
simulations) a stand in for nature itself. […] In a non trivial sense, the 
computer began to blur the boundaries between the ‘self evident’ categories 
of experiment, instrument, and theory” (1997, p. 44-45). The process, 
however, is far from being linear because the term “simulation” refers to a 
variety of techniques with different lineages and theoretical niches, and 
because simulation originates in hard sciences and ends up in social science. 
The paper will consider system dynamics, microsimulation, cellular automata 
and agent-based models, which I consider the most significant for the theory 
of simulation and for economics. These simulations can be split in two 
groups. The first one is related to the development of system dynamics 
modelling under the influence of Norbert Wiener’s1 cybernetics. Computer 
simulations are representations of mathematical models within the computer 
aiming at extending tractability when a large amount of computation is 
needed. The debated point, when those simulations first appeared, was 
whether they could actually be considered as mathematics or, else, they were 

                                                      
1 (Cambridge, MA, 1894 − Stockholm 1964). He started his studies in zoology at Harvard 

turning to philosophy at Cornell one year later. He received his Ph.D. from Harvard at the age 
of 18 with a dissertation on mathematical logic supervised by Karl Schmidt. He then went to 
Cambridge (U.K.) to study under professors Russell and Hardy. In 1914 he was in Göttingen 
to study differential equations under Hilbert and also attended a course of group theory given 
by Edmund Landau. In 1920 Wiener joined the Massachusetts Institute of Technology, where 
he became (1932) professor of mathematics. 
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to be thought of as a mere a support to mathematical research. The second 
one, pioneered by John Von Neumann2 and including cellular automata and 
agent-based computational models, tends to emancipate simulation from 
mathematical representations. 

The next two sections will be devoted to the analysis of these ways of 
conceiving simulation. The leading theme will be the relationship between 
mathematics (read equation-based modelling) and simulation, an issue which 
is pervasive and permeates all related arguments. Originally, simulations 
were nothing but the numerical treatment of differential equations and, in 
addition, most of simulation techniques stemmed from extensions of 
mathematical analysis. Henceforth, it seems natural to treat the argument 
starting from the relationship between simulation and mathematics. 
Discussion will be completed by the description − in Section 3 − of a further, 
more recent, approach to simulation (Ostrom, 1988; Parisi, 2001), which 
focuses on the features that derive from using the symbol system of 
programming language.  

2.1. Simulation at MIT: mathematicians, engineers and physicists. - As for 
the origin of computer simulation, the right place to look at is the MIT during 
and after WWII. In its laboratories, mathematicians, engineers and physicists 
were independently working on issues that later generated the first simulation 
techniques. As it will be shown, the origins and features of computer 
simulation are quite different the ones from the others, but are assimilated by 
one quality: their strong relation to mathematics. However, as simulation 
techniques grew more sophisticated, separation from mathematical 
endeavours started to be a widespread need among simulators. This 
separation, that in my opinion is now completed, took place through a 
progressive identification and conceptualisation of simulation’s properties.  

The attempt at tracing this process brings us to the discussion of different 
views ranging from those insisting that simulation is a pale imitation of 
mathematics, and concluding that it does not pertain to the realm of 
theorising but, rather, to the realm of measurement (Alker, 1974), to the more 
recent ones that pinpoint the characterising elements of simulation and 
contrast them with mathematical and verbal modelling (Axelrod, 1997a). 
Given that first applications openly intended to be mathematical, it took quite 
                                                      

2 (Budapest 1903 – Washington D.C. 1957). Doctorate in mathematics from the University 
of Budapest, undergraduate chemistry degree from the Eidgenossische Technische Hochschule 
in Zurich. In 1930 he went to the United States as a visiting lecturer at Princeton University 
where he was made full professor in 1931. In 1933 he joined the Institute for Advanced Study 
as a professor and retained that position for the rest of his life. 
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some time before the issue concerning the nature of simulation was ripe to be 
discussed. Computer entered universities and research centres in the early 
1960s and the debate started to spread about ten years later; however, to 
grasp fully the terms of the problem, one has to go back to the very inception 
of simulation: WWII.  

2.1.1. Cybernetics and system dynamics. - Our story begins with the 
American mathematician Norbert Wiener working on gunfire control at MIT 
in 1940. He devised a predictor of the behaviour of an aircraft trying to evade 
antiaircraft fire. He conceived the relation between man and machine system 
as essentially similar to that of a servomechanism3. The pilot is considered as 
a part of the steering mechanism and thus it is possible to apply to the 
interaction between man and machine notions − such as feedback and 
stability − which were originally devised for mechanical systems and 
electrical circuits (Wiener, 1961, p. 8; Mirowski, 2002, chapter I). As time 
passed by, such flashes of insights were elaborated in a theory which Wiener 
named cybernetics (after the Greek word kubernetes which means steersman 
or governor) and passed over to meteorology, sociology and economics. 
While the cybernetics contributions to science are highly controversial 
(Heims, 1980; 1991), this paper focuses on its influence on simulations. 
Briefly, Wiener’s idea (1956, p. 251-52) was that, in order to obtain a 
complete mathematical treatment of a system, it was necessary to assimilate 
its different parts to a single root either human or mechanical. Since the 
understanding of mechanical elements appeared far ahead of psychological 
understanding, he chose to construct a mechanical analogue of the relation 
between human and mechanical: the feedback which, roughly, implies 
circular causation. This line of thought was applied to simulation by Jay 
Forrester4 an engineer that, in the same period, was studying feedback control 
systems (control of radar antennas and gun mounts) at MIT’s 
Servomechanism Lab. Wiener’s influence on Forrester is strong; the concept 
of feedback and the theory of causes and effects in fact are central to his 
system dynamics simulation. Following cybernetics dictum, Forrester moved 
away from looking at isolated events and their causes (usually assumed to be 
other events), and started to look at phenomena as systems made of 
interacting parts. He believed that the “events cause events” orientation was 
                                                      

3 A servomechanism is an automatic control of a mechanical device; it regulates the 
mechanism in response to feedback. 

4 Jay Forrester was born in 1918 in Nebraska, attended the Engineering College University 
of Nebraska, and graduated at MIT in 1939. He then joined the High Voltage Lab and 
transferred a year later to the Servomechanism Lab. 
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not very helpful in understanding a system and altering its undesirable 
performances. This because it is always possible to find another event that 
caused the one that was thought to be the cause. This is almost a regressio ad 
infinitum and thus it is difficult to determine where to stop searching for 
causes and begin to act in order to improve performance. System dynamics 
takes the alternative viewpoint that the internal structure of the system (the 
way parts are interrelated) is often more important than the external events in 
generating the behaviour of the system. According to Forrester, a proper 
definition of such interrelation is the feedback: e.g. the situation of X 
affecting Y and Y in turn affecting X perhaps through a chain of causes and 
effects. The idea is that it is impossible to study the link between X and Y 
independently, because it is precisely the link between Y and X that will 
generate system behaviour.  

System dynamics, in Forrester’s thought, is a way to investigate 
counterintuitive and surprising outcomes that can arise in systems of multiple 
non-linear equations. A system dynamics model describes the target system 
by means of large systems of (discontinuous) differential equations from 
which the trajectories of variables over (discrete) time are plotted. The target 
system is an undifferentiated whole whose properties are described with a 
multitude of attributes in the form of levels (the state of the entire system) 
and rates (its changes) (Gilbert and Troitzsch, 1999, chapter III). The model 
starts with individuating the pattern of behaviour exhibited by the variable of 
interest over time (e.g. exponential growth) and by describing the system 
structure in terms of feedback or causal loop. In terms of economic 
methodology, system dynamics modelling is a pattern modelling process. 
“With proper refinements, an insightful system dynamics model can be 
transformed into a real typology called a generic structure (i.e. a model that 
captures the fundamental relationships that appear in a variety of pattern 
models within a category). Such generic structure, when correctly 
parameterised can mimic any patterns in its category” (Radzicki, 2003, p. 
151). 

The lesson that can be learnt from this kind of simulation is that, in 
practice, it was meant to be mathematical, its main modelling feature being 
the ability of extending analytical treatment to discrete time and non-
differentiable differential equations. Another attribute that contributed to 
direct the following debate was that Forrester’s vocation was practical: “early 
system dynamics analyses were in the consultant mode in which the system 
dynamicist would study a corporation, go away, build a model, and come 
back with recommendations” (Forrester, 1989).  

Early system dynamics was thus tuned on problem solving for 
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corporations, bureaucrats and policy makers, and as such had a “business” 
flavour that did not facilitate its recognition in the academic field. Forrester 
retained the idea that research and theory must be related to the field 
application, and described his work as an attempt to run from mathematical 
theory to the operating field. In fact, the beginning of system dynamics was 
an inventory control system with pencil and paper simulation for General 
Electric. The proper simulation arrived a bit later, when he asked a computer 
programmer to write down the code for his 1958 article “Industrial Dynamics 
− A Major breakthrough for Decision Makers”5. The programmer created a 
compiler that would automatically generate the computer code and called it 
“SIMPLE” the acronym for “Simulation of Industrial Management Problems 
with Lots of Equations”. The presence of a compiler accelerated modelling to 
such an extent that it rapidly expanded and nowadays it is still widely used 
especially by an active group at the Sloan College at MIT. In 1969, Forrester 
applied system dynamics to the description of urban dynamics, a work that 
raised a lot of criticism. Together with the mayor of Boston whom he had met 
at MIT as a professor of Urban Affairs, he portrayed the city as a system of 
interacting industries, housing and people. His conclusions produced strong 
reactions. The model suggested that “all the major urban policies that the 
United States was following lay somewhere between neutral and highly 
detrimental, from the view point of either of the city as an institution, or from 
the viewpoint of the low income, unemployed residents, and that the most 
damaging policy was to build low-cost housing [because] such housing used 
up space where job could be created, while drawing in people who needed 
jobs” (Forrester, 1989).  

In a time in which low cost housing policy was believed to be essential, 
the publication of Urban Dynamics (1969) did not contribute much to the 
fortune of simulation. A similar reaction was reserved to The Limits to 
Growth (Meadows et al., 1972), a book that adopted Forrester’s system 
dynamics to look at the prospects for human population growth and industrial 
production in the global system over the next century. A computer model was 
used to simulate resources production and food supply to keep up with the 
growing system. The authors concluded that the world could not support the 
present rates of economic and population growth much beyond the year 2100. 
Those models made a major impact but also diffused the feeling that 
simulation was somewhat non-scientific as it became clear that results 
heavily depended on the specific quantitative assumptions made about the 
model’s parameters and that many of them were backed by rather little 

                                                      
5 The article later became chapter II of Industrial Dynamics (1961). 
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evidence. As it will be shown, the feeling among scientists was that system 
dynamics had made questionable policy recommendations as in the case of 
Forrester (1969) as well as inaccurate predictions as in the case of Meadows 
et al. (1972).  

2.1.2. Microsimulations. - In the same years at MIT, Guy Orcutt6, a 
researcher who was trained in engineering, physics and economics developed 
microsimulation (1957; Orcutt et al., 1986), a technique attempting at 
modelling social phenomena in highly disaggregated way7.  

Orcutt’s interest in economics was motivated by the nation economic 
difficulties (Orcutt, 1990). From his studies in economics he become 
convinced that economic models were in urgent need for stronger empirical 
basis. Around 1950, by focusing on data aggregated at the national account 
level, he realised that they were not accurate enough to provide a useful guide 
for policy. Orcutt thought that economic models should have been built at the 
micro level and, therefore, that a solid understanding of the behaviour of 
micro-units was required. As for policy implications, models should have 
taken into account that the overall impact of such policies may depend on 
how their consequences are distributed over non-homogeneous individuals. 
Aggregate time series cannot capture those aspects, and, even if it is possible 
to establish robust behavioural relationships at the microunit level, there 
remained the problem of aggregating them in order to appreciate the 
macroeconomic consequences of policies or exogenous shocks. Orcutt’s 
answer to this problem was the conceptualisation and implementation of 
microsimulation. Microsimulation represented the convergence of the ideas 
he nurtured during his training (Watts, 1991, p. 174): the first was Monte 
Carlo simulation (see below) he had been using in the context of electrical 
analogue models to explore the consequences of autocorrelation in regression 
estimates; the second one was the neoclassical economics imprinting that 
drew his attention on the market as a system in which many agents interact; 
the third one, attributable to his studies in physics, was that the world is 
recursive, ruled by the response-follow-to stimulus motto. A microsimulation 
is a computer code that applies to a dataset of micro units (e.g. households or 
firms). It starts from a representative sample of the population that contains 
                                                      

6 University of Michigan: B.S. Physics, Ph.D. Economics. Soon after finishing his doctoral 
dissertation in 1944 he was appointed at MIT. Orcutt’s works, alone and with Donald 
Cochrane, are part of every econometrician’s tool kit.  

7 The structure of microsimulation models was described in 1957 and the first application, 
regarding demographic processes (birth, death, marriage, divorce), labour supply and 
education demand, began around that time and appeared in Orcutt et al. (1961). 
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all the information of interest (e.g. age, sex, marital status, participation to 
education, income) observed in a given moment of time. The simulation 
consists in observing the state of the sample under different scenarios. A 
microsimulation can be either static (in which case the sample does not 
change) or dynamic (in which case the units undergo some transformation in 
response to time or to behavioural pressure). The static microsimulation is 
best used to calculate the day after effect (before behavioural reactions) of a 
policy change. Imagine we want to compute the effect on the government 
revenues of a reform of the income tax. For each unit the sample displays the 
(gross) income level and the other relevant variables such as appliable 
allowances and deductions (e.g. allowances for children, cost of education, 
social security contribution…). The computer code calculates individually the 
taxable income and, subsequently, the tax to be paid. The procedure can be 
repeated for different tax structures. Results can then be observed at the 
individual and aggregate level. It is worth noting that, apart from the tax 
formula, all the other features are kept constant (there is no aging process, no 
birth or change in occupational status). In dynamic simulation, on the 
contrary, the units of the sample can change as the simulation runs. 
Following life tables, at each time step individuals are aged, and – according 
to age – they can either give birth to a child or retire from work, die and so 
on. Consequently, changes are computed for all the related attributes such as 
income, participation in education, employment. Dynamic microsimulation is 
applied to long-run prediction of demographic change and to its effects on 
social expenditure, and to long term behaviour of labour supply, consumption 
and the like. For example, in order to know how many people of 60 years or 
older will have adult near relatives who could nurse them if they needed care, 
one cannot simply run a system dynamics demographic simulation which 
computes the future structure of the population as a whole. Rather, a model of 
the kinship networks within the sample and including their transformation in 
time is needed. Hence, individual data are used and birth and marriage 
probabilties are applied to update the sample year by year. After the desired 
number of runs the results are interpreted as the evolution of the initial 
sample8. 

As compared to system dynamics, the modelling approach is considerably 
different. While the former considers the target system as a whole which 
disregards the features of the units and therefore produces very aggregated 
information, microsimulation generates individual information that can be 
                                                      

8 A further type of microsimulation called longitudinal applies to the entire life of an age 
cohort. For further discussion see Gilbert and Troitzsch (1999, p. 7; 53-73) from which these 
examples are borrowed. 
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aggregated at the desired level (group, age range…). As for the more general 
features of this modelling approach, it is worth stressing that is has no 
pretension to explain the phenomenon under study: it simply aims at 
prediction. Secondly, there is no attempt at modelling interaction among 
units, rather each of them has a given trajectory which is independent of that 
of the others. Finally, when units change their state they do so exogenously 
(for instance according to life tables) and not in response to some behavioural 
rule. 

Microsimulation found lasting employment and wide acknowledgement 
within economics (particularly in gender and population economics and in 
tax policy analysis)9, but this did not help much in contributing to 
simulation’s success. In fact, it contributed to circulate the idea that 
simulation is merely a measurement procedure, something that has to do 
mainly with statistics and perhaps with econometrics, but cannot stand 
independently of mathematical and verbal modelling. 

On the other hand, scientists were bothered by the empirical failures of 
system dynamics and by the difficulty of framing computer simulation within 
the traditional categories of science10. A typical example of this kind of 
reasoning comes from Hayward Alker’s paper of 197411. Alker compares 
simulation (read system dynamics) with mathematical models and natural 
language descriptions. However, he feels none of them fits it completely. 
System dynamics are large system of equations that are written in a 
programming language and that include qualitative statements. Moreover, the 
procedure to obtain the output is different from analytical solution and this, 
he believes, changes the nature and reliability of results. They are not as 
reliable as those generated by elegant and soluble mathematical 
representation of social processes, the lack of rigour being due to the absence 
of a shared set of formal representation and to lack of received procedures for 
the solution of the models (Alker, 1974, p. 152). He therefore concludes that 
simulation is “bad mathematics and poor social science” (p. 140) and thus it 
is closer to non scientific representations12. The use of simulation must be 
secondary with respect to the traditional mathematical and natural 
                                                      

9 Moreover, in many countries (Australia, Israel, United Kingdom, Germany, Sweden…) 
specialised institutes carry out this kind of simulation and publish their results on a regular 
basis. See for instance the publications of the National Centre for Social and Economic 
Modelling of the University of Canberra (www.natsem.canberra.edu.au). 

10 See for instance the debate appeared in different issues of Science in 1973. Disputes 
surrounded especially the works of Forrester (1971) and Dreyfus (1972). 

11 Alker is a political scientist that uses simulation to model decision making in political 
processes. For an example see Alker and Christensen (1972).  

12 Recent studies (Edmonds, 2005) echo Alker’s opinions. 
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descriptions and must be used to explore hypotheses rather than to formalise 
them. The results of a simulation can be considered, at most, as hints for 
social scientists that must not be trusted since a lot of them “are contradicted 
by available evidence; others have not even been carefully tested, a few fit 
the evidence within limited content areas reasonably well” (Alker, 1974, p. 
152). 

Alker’s opinion reflects the difficulty in including simulation in the 
existing categories and the negative impression it has made on social science. 
It will take some more time before new categories are imported from 
computer science and new simulation techniques are perfectioned to clarify 
the status of simulation. Let us see how this happened. 

2.2. Simulation gains autonomy: mathematicians, computer scientists and 
economists. - Apart from microsimulation, little was heard about simulation 
in the 80s. However, there were forces at work. On the one hand, new 
techniques, such as agent based models, bring simulation farther from 
mathematics. On the other hand, in this decade simulation starts to be 
considered as an autonomous way of doing research. In fact, if for system 
dynamics and microsimulation computer was necessary to extend 
computational abilities, as simulation techniques evolve (embedding, for 
instance, spatial descriptions), computer is needed because the model can be 
“solved” only within the machine since it is not possible to write and solve an 
equivalent, equation based, mathematical representation. In addition, there is 
a progressive shift of focus from a macro approach (whose attention is 
devoted to the whole target system) to a modelling approach that stresses the 
relevance of decentralised interaction and learning models. As we have seen, 
in microsimulation agents do not actually interact, whereas in this stream of 
simulations the core of the analysis is the study of macro regularities that 
emerge out of proper local interaction. Let me give an example: if in a 
microsimulation the decision to give birth to a child depends on life tables, in 
the simulations I am about to describe the same decision would be made 
taking into account the status of the neighbours (for instance, a female agent 
can generate an offspring only if she has a male neighbour) or the 
environmental conditions (for instance, reproduction will take place only if in 
a given location of space there are enough resources to substain it). It follows 
that, contrarily to microsimulation, agents have explicit behavioural rules 
and, when learning algorithms are introduced, they can learn from experience 
and exhibit innovative behaviour. With respect to system dynamics these 
simulations can, at least in the most recent developments, quite easily manage 
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the representation of physical space separately from agents13. 

2.2.1. Von Neumann and cellular automata. - The impulse to such 
innovations, similarly to what happened for system dynamic and 
microsimulation came from physics and engineering. The incipit of this 
stream of simulations is to be found, yet again, in WWII and is due to the 
most eclectic member of the cybernetics group: John von Neumann. His 
writings on computer theory (1958; 1961-63; 1966)14 anticipated many of the 
contemporary issues on computer simulation and inspired the simulation 
techniques discussed in this section.  

From 1943 to 1955, von Neumann worked at Los Alamos National 
Laboratories as a consultant to the armed forces. He was collaborating to the 
making of the atomic and hydrogen bomb. In order to deal with complicated 
physical processes that he could not directly observe and experiment, such as 
the possibility that the test of the atomic bomb would ignite the atmosphere, 
he developed a method to simulate hydrodynamics, turbulence, and chain 
reaction in the computer that lately has come to be known as Monte Carlo 
simulations15. The method was born out of his dissatisfaction with 
mathematical knowledge of non linear partial differential equations. The 
procedure he pioneered was to employ computer to solve numerically cases 
and to use the results as heuristic guide to theorising (von Neumann 1966, p. 
3). This heuristic use of computers consisted in discovering regularities by 
solving many (non-linear differential) equations and in generalising results. 
Solutions were not sought for their own sake, but as an aid to discover useful 
concepts and general theories: “The heuristic use of computers is similar to 
and may be combined with the traditional hypothetical-deductive-
experimental method of science. In that method one makes a hypothesis on 
the basis of the available information and derives consequences from it by 
means of mathematics, tests the consequences experimentally, and forms a 
new hypothesis on the basis of the findings. This sequence is iterated 
indefinitely. In using a computer heuristically one proceeds in the same way, 

                                                      
13 For a more technical explanation see Epstein and Axtell (1996, p. 15-16). 
14 He agreed on writing a book on this topic in connection with some lectures given at the 

University of Illinois. The outline of these lectures together with the recording and typescript 
have been reorganised by Arthur Burks and published in 1966. Among the previous 
contributions included in the Collected Works see also: “The General and Logical Theory of 
Automata” (1948,vol. 5, pp. 288-328); “Probabilistic Logics and the Synthesis of Reliable 
Organisms from Unreliable Components” (1952, vol. 5, pp. 329-78). 

15 A Monte Carlo simulation is a stochastic technique that samples a large system in a 
number of random configurations, so that data can be used to describe the system as a whole. 
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with computation replacing or augmenting experimentation. One makes a 
hypothesis about the equation under investigation, attempts to pick up some 
crucial special cases, uses a computer to solve these cases, checks the 
hypothesis against the results, forms a new hypothesis, and iterates the cycle. 
The computations may also be compared with experimental data. When this 
is done the heuristic use of computer becomes simulation. Computation in 
itself can only provide answers to purely mathematical questions, so when no 
comparison is made with empirical facts the heuristic use of computers 
contributes to pure mathematics” (1966, p. 4).  

With respect to previous positions, in this assessment we find novel 
elements. The difference between computation and simulations, and the 
contribution of the latter to theorising on a pair with mathematics are 
explicitly stated. With respect to Forrester and Orcutt, the approach here is 
very different. Forrester’s system dynamics was driven by practical concerns, 
i.e. how to solve housing problems in a given city or how to improve the 
efficiency in a corporation, while Orcutt was trying to highlight the 
consequences of public policy across heterogeneous groups. According to 
von Neumann, simulation is on the same level as the deductive methods, has 
a general scope, and can be used in devising theories. In a close relation with 
his applied work with simulation, in the late ’40 he started developing a 
theory of automata that, due to his premature death, was left incomplete. 
Being convinced of the existence of important similarities between computer 
and natural organisms and of the usefulness of comparing such related 
systems, he sought a theory that would cover them both. He called it the 
“Theory of cellular automata”. It was concerned with the structure and 
organisation of both natural and artificial systems and the role of language 
and information, programming and control in such systems (von Neumann 
1966, p. 18). The blueprint of the theory was both mathematical and logical 
(von Neumann 1966, p. 25-28) while the study of actual automata provided 
its empirical core. Mathematician Stanislaw M. Ulam (1960, chapter 8) liked 
to concot pattern games for the computer at Los Alamos: given certain fixed 
rules, the computer would produce ever-changing patterns. Ulam’s games 
were cellular games played on limitless chessboards: each pattern was 
composed of square cells that grew and changed as simulated (discrete) time 
passed. At each step, the state of a given cell depended only on the states of 
its neighbouring cells. Ulam suggested to von Neumann to adopt the 
“cellular” framework for his analysis of machine reproduction. In doing so, 
he would have been able to exploit the cellular structure that reduces the 
otherwise infinitely many possible connections between components to a 
controllable plan: the model would have been rich enough to cover all the 
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essentials of machine operation but, at the same time, as simple as possible. 
Von Neumann used an infinite lattice as his universe. In the latter, each 
square cell could be in any of a number of states corresponding roughly to 
machine components (a “machine” was a pattern of such cells), and the rules 
governing the world would be a cut down physics. Cellular automata, with 
their ambition to embrace both natural and artificial systems, would become 
in the following years an established way of modelling social systems in 
which local interaction takes place. However, from physics to social systems 
the route is not short. The first concerted effort to apply explicitly cellular 
automata to social science was accomplished, without the use of a computer, 
by an economist: Thomas Schelling. His Segregation Model (1969, 1971a, 
1971b, 1978) consisted in placing coins on a chessboard and moving them 
following given rules. He interpreted the board as a geographical space and 
coins as agents. Rules specified whether an agent was satisfied with her 
location. If she was unhappy, she would move to another location. Schelling 
found that the board evolved into a segregated configuration even if the 
agents’ rules expressed only a weak preference for having neighbours of their 
own type (www.econ.iastate.edu/tesfatsi).  

2.2.2. The Santa Fe Institute and agent-based simulations. - In the 80’, the 
use of cellular automata was made more practical by the subsequent 
development of general purpose cellular automata simulator programs to be 
applied to problems of adaptation and optimisation. In the same years, 
Schelling’s simulations with its developments in silico were worked out 
along different lines, mainly at the Santa Fe Institute16. The outcomes of 
these researches have found a systematisation and a number of seminal 
extensions by Joshua Epstein17, an economist working at the Santa Fe 
Institute. Epstein’s research was presented in the book written with Robert 
Axtell18: Growing Artificial Societies: Social Science from the Bottom up 
                                                      

16 The Santa Fe Institute, founded in 1984, is devoted to the creation of a new kind of 
scientific research community, by emphasizing multidisciplinary collaboration in the pursuit of 
understanding the common themes that arise in natural, artificial, and social systems. Among 
the economists, in the Science Board seats Kenneth Arrow. Among the business members we 
find the Los Alamos National Laboratory. 

17 Ph.D. MIT, 1981; B.A. Amherst College, 1976. He is senior fellow in economic studies 
at the Brookings Institution, member of external faculty of Santa Fe Institute, member of the 
National Academy of Sciences. He previously worked for the Rand Corporation, the Council 
on Foreign Relations, the U.S. Department of State and the U.S. Senate Armed Services 
Committee. 

18 Ph.D. Carnegie Mellon University, 1992; B.S. University of Detroit, 1983. He is senior 
fellow in economic studies at the Brookings Institution. 

http://www.econ.iastate.edu/tesfatsi
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(1996). It proposes an original approach to economics (which will be 
discussed in Section 5) that explicitly acknowledges its lineage with 
Schelling and von Neumann: agent based economics19. The book, which is a 
sort of manifesto for agent-based computational economics, introduces 
Sugarscape, an artificial society in which demographic, environmental, and 
economic processes take place. This work is important to us, not only 
because it represents the most recent evolution of Von Neumann’s simulation 
techniques, but also because it is the most organised attempt to characterise 
simulation as a research methodology. Agent-based economics aims at 
analysing “fundamental social structures and group behaviours as emerging 
from the interaction of individuals operating in artificial environments under 
rules that place only bounded demands on each agent’s information and 
computational capacity. We view artificial societies as laboratories where we 
attempt to grow certain social structures in the computer […] the aim being 
to discover fundamental local or micro mechanisms that are sufficient to 
generate the macroscopic social structures and collective behaviour of 
interest” (Epstein and Axtell, 1996, p. 4). The idea recalls closely that of the 
economic phenomena as the unintended result of decentralised interaction of 
individuals with the inclusion of the more recent ideas of Simon’s bounded 
rationality and of Hayekian incomplete knowledge (Vriend, 2002). 
Technically this is implemented by programming on three interacting levels. 
First, the model needs agents (firms, consumers….) that can have the desired 
levels of heterogeneity (technology, endowments, gender, age...). Second, 
agents populate an environment that is separate from them and with which 
they interact. Finally, the model needs rules that govern agents’ and 
environmental behaviour as well as the interaction between the two. For 
instance, imagine a population of agents living on a lattice gathering and 
exchanging a resource necessary for survival. There will be individual rules 
of movement, gathering and trade for the agents and rules of reproducibility 
of resources for the environment. The computer will place the agents on the 
grid and let them behave according to the rules without any intervention on 
the researcher side. The behaviour of the system will be observed at the 
micro level (the story of each agent can be tracked) and at the macro level as 
an aggregation of the behaviour of the individuals. With its emphasis on the 
effects of interaction, agent-based simulations are similar to cellular automata 
to an extent that the latter are often subsumed in the former category, as in 
the case of Axelrod (1997b). Technically, since a cellular automaton’s 
                                                      

19 The publication of Growing Artificial Society is conventionally taken as the milestone of 
agent-based economics. However, such models and the label ‘agent-based models’ were 
already in use among researchers in the first years of 1990. 
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decision rule makes reference to the states of other cells in the 
neighbourhood, cellular automata are best suited to model situations where 
interaction is local, whereas agent-based models can include many different 
kinds of relationships among agents such as global (i.e. the single unit 
interacts with all the other units in the population) or random (i.e. the single 
unit interacts with one or more units randomly picked from the population) 
interaction.  

In agent based economics, social science is interpreted as an experimental 
science20: models are laboratories in which one can make different 
hypotheses on the phenomenon under study and observe the output: 
regularities emerging from micro rules and the robustness of such 
regularities. As in biology, results are interpreted in terms of candidate 
explanation (sufficiency of rule to generate a given regularity) and not in 
terms of general laws21.  

Most important to us, contraposition to equation-based modelling is sought 
and explicit (Epstein, 1999). Thinking of such kind of simulation in terms of 
mathematical representation becomes more difficult than in the past, since 
there is not a readily available mathematical technique which is able to 
translate such models in analytical terms. In fact, even if in principle every 
computation has a corresponding function22, in the case of agent-based 
models, it is not obvious how to write down the appropriate equations and 
how to solve them if formulated (Epstein, 1999, p. 51) and actually, to my 
knowledge it has not been done yet. It follows that agent-based simulation is 
different from its predecessors in that, so far, there is not a mathematical 
representation. With respect to microsimulation, results derive from 
decentralised interaction and not from the aggregation of the separate history 
of the units. As compared to system dynamics, the system is not considered 
in its entirety. In addition, there is a space which is distinct from the agents’ 
population, whereas in ordinary differential equations models there is no 
spatial component (agents interact only in time but not in space). 

Differently from the positions reported by Alker, according to whom the 
recognition of simulation was subordinated to the possibility of obtaining the 
                                                      

20 This is intended as “controlled experimentation” and not as intended by experimental 
economics, that aims at determining which rules are actually employed by individuals. 

21 As a relatively new approach, agent-based simulation still has to solve important issues 
such as the problems arising when there is more than one microspecification that generates the 
macrostructure of interest. Moreover, for what concerns the robustness of results the literature 
on sensitivity analysis of agent-based models is quite limited and still under development. For 
some early reflections on this topic see Axtell and Epstein (1994); for an interesting exercise in 
the alignment of computational models (docking) see Axtell et al. (1996). 

22 This statement is known as the Church-Turing thesis.  
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status of mathematical science, here the detachment from the spirit and 
method of mathematics is explicit: “no one would fault a “theoremless” 
laboratory biologist for claiming to understand population dynamics in 
beetles when he reports a regularity observed over a large number of 
experiments. But when agent based modellers show such results […] there is 
a demand for equations and proofs. […] one can do perfectly legitimate 
science with computer, sweeping the parameter space of one’s model, and 
conducting extensive sensitivity analysis, and claiming substantial 
understanding of the relationship between model inputs and model outputs, 
just as in any empirical science for which general laws are not yet in hand” 
(Epstein, 1999, p. 51). This is a concept of science which resembles the one 
promoted by von Neumann through the heuristic use of computer: explore the 
phenomenon via simulation to find regularities and then extract general 
principles and theories.  

Agent based economics is different from the mathematical approach in the 
kind of sought explanations, even when a mathematical soluble 
representation is available. A question that any simulator must be ready to 
answer (as I did myself in many circumstances) is “Why do we need 
simulation if we can get a given result from a low dimensional differential 
equation?”. The answer relies on one’s criterion of explanation. For instance, 
an oscillatory time series can be described by a function of the kind y = f(x). 
The behaviour of y, the left hand side variable, is accurately described in 
mathematical terms, but what happens inside the system, which “rule of 
behaviour” generates, on aggregate, the observed oscillation, remains 
unknown. To this purpose, the function “is devoid of explanatory power in 
spite of its descriptive accuracy” (Epstein, 1999, p. 51). Simulation is 
therefore useful when the emphasis is on the process that generates a given 
regularity, while mathematics is more concerned with the description of the 
system. With agent-based simulation, the path opened by von Neumann and 
Wiener has brought to some definitive conclusions: simulation, at least for 
what concerns agent-based models, is different and autonomous from 
mathematics and, in spite of its being an instrument generated to investigate 
physical and mechanical processes, it is well suited to study social systems 
too.  

3. Other Contributions: Symbolic System and Cognitive Attitude 

This section is devoted to the analysis of some recent interpretations of 
simulation. These are kept separated from the previous ones since they come 
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from very different traditions: psychology and computer sciences. They rely 
on features that have been neglected by the scientists so far encountered, 
namely, the programming languages and the cognitive relationship between 
researcher and theory. These assessments are reported to witness both the 
increasing interest in giving simulation an independent status and the attempt 
at isolating its properties that runs parallel in many different disciplines. 

In 1988, social psychologist Thomas Ostrom studies simulation on the side 
of the used symbol system. He believes that the characteristic attribute of 
simulation lies in its being a symbol system distinct from the traditional ones. 
Programming languages, according to Ostrom, are different both from natural 
and mathematical symbols “many…regard computer simulation as merely a 
method. […] All of this could lead the reader to assume that computer 
simulation is merely a technology [instead] computer simulation is a symbol 
system; it is a medium through which theoretical concepts can be represented 
and communicated. Rather than being a special purpose technology, it is 
regarded as offering theorists in all areas of social psychology an alternative 
way of expressing their ideas”(1988, pp. 382-83). He therefore concludes that 
simulation has to be considered as autonomous from mathematics and has to 
be given a status on a pair with it. 

More recently, cognitive psychologist Domenico Parisi (2001) extends 
Ostrom’s position by qualifying the concept of simulation as the third symbol 
system and by adding a further specification. He maintains that not only 
simulation is a way of expressing theory, which is as covering and acceptable 
as mathematics and natural language, but also – as a symbol system – it 
exhibits a unique property. While the symbol systems of mathematics and 
natural language theories are semantic, the symbol system of simulation is 
syntactic. A semantic symbol is an object of reality that, perceived by a mind, 
generates a meaning in it. In fact, it is by comprehending such symbols that 
researchers can derive implications from theoretical statements and try to find 
empirical validation. This is not quite the case for the symbol system of 
computer simulation: programming languages. Those symbols are not human 
oriented, they are computer oriented. A computer program is a list of 
instructions that the scientist gives to the computer to obtain the desired 
operations and manipulations. According to Parisi, it is not necessary that a 
human being understands what the computer is going to do with the program 
for the simulation to produce the output correctly. In other words, these are 
generated only by the computer. Syntactic symbols do not work by virtue of 
their meaning but only by virtue of their physical characteristics. One can 
object that the symbols must produce some meaning at least in the person 
writing the program and interpreting the results. The answer is obviously 
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positive, but a caveat is necessary. Modelling a phenomenon by means of a 
mathematical model requires the knowledge of the rules of writing and 
manipulating, say, a system of equations. When writing a program, the 
researcher knows how to write a list of commands, this list will be then 
translated by the computer into a “machine language”23 that will tell the 
computer what to do. This latter language needs not to be known by the 
programmer neither he needs to know how it works (say, with a decimal or 
binary system). This distinction implies a special cognitive interaction 
between mind and theory. In other words, premises are stated in the 
programming language and implications are derived by the machine 
operating with its own language, independently of any human cognitive act. 
Results are presented in an output form that has to be interpreted by the 
researcher, but the process through which the former are generated has taken 
place outside the human mind and within the machine.  

Leaving aside details that are strictly linked to cognitive aspects, it seems 
to me that Parisi raises an interesting aspect which has a general flavour: 
simulations are automated mental experiments. That is to say that the theory 
written in the programming code produces implications and predictions by 
means of the computer. This is obviously an important difference with 
respect to theories expressed in mathematical and natural languages that, 
under given circumstances, would justify the use of simulation. In fact, 
simulation has the desirable property of reducing the incidence of errors in 
the process of drawing conclusions from premises. This is true in a twofold 
sense: the steps of the procedure are correctly performed (for instance, there 
are no calculus mistakes), and the researcher’s convictions cannot affect the 
output (for instance, she believes that a given statement descends logically 
from premises while, after the simulation is ran it emerges that it does not).  

4. Some Conclusions on the Nature of Simulation 

At the origin, simulation was used in the hard sciences as a continuation of 
the mathematical modelling tradition: it was nothing but the numerical 
treatment of difference or differential equations where computer replicates 
and manipulates mathematical language. In the following years computer 
becomes a tool to manage the symbol of programming language (Troitzsch, 
1997), and computer simulation gains independency from mathematics and is 
used to model those aspects of phenomena that the latter cannot encompass 
                                                      

23 The distinction between machine language (primary language) and programming 
language (secondary language) is due to von Neumann (1966). 
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(e.g. physical space and qualitative rules, endogenous change in the model 
structure). However, as Parisi and Ostrom stress, it is not only a matter of 
field of application: simulation implies a different way of approaching 
scientific research. Differences reside in the symbol system of programming 
languages and in the way of drawing implications and predictions. Not only 
simulation is a way of automating mental experiments, but its application 
also implies an experimental interpretation of science.  

The experimental approach together with the absence of theorems and 
proof made it particularly hard for simulation to enter the realm of 
economics. Economists have been prone to accept numerical and statistical 
simulation, while they have been far less receptive for what concerns the 
theory-as-simulation such as agent-based models. The reason for this attitude 
together with the role of simulation in economics will be the subject of the 
following section.  

5. Simulation and Economics  

The history of simulation in economics is a characteristic one. Its inclusion 
in the economists’ armoury involves a shift of methodology and competences 
and, in some cases, implies a detour from the received economic theories. 
The analysis of all these facets falls out the scope of this study. Nevertheless, 
in this section I will concentrate my attention on two points that I believe are 
particularly seminal. The first one regards communication between branches 
of science, namely physics and economics, the second one concerns the 
relationship between orthodox and heterodox economics and the value added 
of simulation to the understanding of economic phenomena. 

Simulation has been developed by scientists who were in close 
relationship with economics but, within this discipline, it has: “not usually 
[been] explicitly defended, and certainly not with the fervor mixed with 
confusion that existence theorems and significance have been” (McCloskey, 
1998, p. 184-85). This is probably due to the events dating back to the 40s: in 
the departments of engineering simulations were employed to run controlled 
experiments on physical phenomena, while economics was turning into a 
divergent road. In those years, according to the ongoing project of 
axiomatisation, economics got focused on theorems and proofs and started 
looking mainly at the existence and stability of equilibria. It seems almost 
trivial to consider that, since economics transformed into a mathematical 
science, there was no much room left for simulation that, with its empirical 
vocation and without axioms, was not a very appealing methodology to 
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adopt. However, one must not think that simulation has not been used in 
economics. In fact, from the 60s onwards it has been intensively introduced 
within economics but overwhelmingly to “measure” economic phenomena in 
the style of microsimulation. Economists’ perception of their science as an 
axiomatic one was so rooted that even those who contributed to the birth of 
simulation – chiefly von Neumann − switched from physics (cellular 
automata) to mathematics (theory of games) when dealing with economics24. 
So it happened that, while on the one side both Wiener (through Forrester’s 
system dynamics) and von Neumann contributed to the advances in 
simulation, on the other side they never applied this methodology directly to 
their economic endeavours. The hiatus between physics and mathematics 
must have seemed so deep that von Neumann and Wiener had to change 
language to be understood by their fellow economists. Moreover, and 
strangely enough, modern neoclassical economists have received in their 
theories the cybernetics insights on information flows (Mirowski, 2002, p. 6) 
but have not adopted Forrester’s methodology to explore their implications 
preferring a traditional mathematical modelling. 

The legacy of von Neumann was then picked up by heterodox economists 
such as agent-based economists and used to criticise the axiomatic approach. 
Agent-based economics, which explicitly acknowledges the cybernetics 
lineage (Epstein and Axtell, 1996, p. 2-3), gathers different instances of 
dissatisfaction with theorising and modelling in economics and proposes 
simulation as the natural way to approach social sciences. From a theoretical 
point of view, agent-based simulation is concerned with the relationship of 
individual behaviours to macroscopic regularities and with dynamics as 
opposed to general equilibrium theory and game theory. It insists on agents’ 
heterogeneity, bounded rationality, and imperfect knowledge. Agent-based 
simulations are computer simulations built in such a way that assumptions 
such as representative agents, auctioneer or faultless rationality can be 
relaxed (Tesfatsion, 2005). Agent-based economics is nowadays 
encountering a growing favour witnessed by the publication of many 
contributions on mainstream journals (Arifovic, 1996; Holland and Miller, 
                                                      

24 Traditionally, von Neumann’s research is split in two opposed periods: the first one 
devoted to economics and the second one devoted to computer related issues. I am not 
convinced that such distinction holds since, even if works on automata follow those pertaining 
to economics, von Neumann started to deal with computer programs and simulations when he 
was about to publish The Theory of Games and Economic Behaviour (von Neumann and 
Morgenstern, 1944). Rather it seems to me that under many aspects the projects have been 
carried out together. For instance, the relationship between mathematics and empirics is stated 
in 1944 (chapter 1, p. 5) and corroborated in The Theory of Self-Reproducing Automata (see 
further references in Burks’ introduction to the book, 1966, p. 18). 
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1991; Tesfatsion, 2001) 25 and by the interest shown by economists that tend 
to be included into orthodoxy (Anderson, Arrow and Pines, 1988; Arrow 
1994). Its increasing relevance to economists is recorded by Colander (2003) 
who, in reporting the events in two conferences held at the Santa Fe Institute 
nearly a decade apart, points out a dramatic change. In the first conference, 
held in the mid 80s, “the economists mostly attempted to defend their 
axiomatic approach, facing sharp challenges and ridicule from the physicists 
for holding relatively simplistic views” (Colander, 2003, p. 8). In the second 
one, held in the mid 90s, “no longer were mainstream economists adhering to 
general equilibrium orthodoxy. Now they were using methods adopted from 
biologists and physicists, many suggested at the early conference, in 
innovative ways”26. Another hint of the reception of simulation into 
economics comes, in a much less enthusiastic tone, from Frank Hahn (1991, 
p. 50): “not only will our successors have to be far less concerned with 
general laws than we have been, they will have to bring to the particular 
problems they will study particular histories and methods capable of dealing 
with the complexity of particular, such as computer simulation. Not for them 
[…] the pleasure of theorems and proofs. Instead, the uncertain embrace of 
history, sociology and biology”. 

Let me now turn to my second point: What can simulation say that 
(neoclassical) mathematical models cannot? A first instance concerns the 
contrast between linear and non-linear modelling of phenomena. While it is 
widely conceded that, due to the presence of many interacting agents, non-
linearity is ubiquitous in economic phenomena, on the modelling side the 
latter are often reduced to linear systems. The most important example of 
such procedure is the traditional Walrasian representation of the market 
mechanism: all agents are identical in means (i.e. perfect rationality, full 
information) and ends (maximisation of the same objective), and the 
behaviour of such market is simply the summation of the individuals’ actions.  

From the modelling point of view, the behaviour of linear systems is 
completely understood. They can exhibit few typical independent motions 
and their behaviour in all regions of the state space is proportional to their 
behaviour in a small neighbourhood of the origin (Albin and Foley, 1998, p. 
6). This leads to predictability and to a rather accessible mathematical 
treatment. When faced with the well known ciriticisms concerning the 
realism of such a market model (Kirman, 1989, 1992), economists frequently 
                                                      

25 For some statistics on where economic simulation models have been published from 
1969 to 2004 see Fontana (2005). 

26 Studies presented at those conferences are collected in Anderson et al. (1988) and Brian 
et al. (1997) respectively. 
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answer that there is not a natural methodology for relaxing those assumptions 
about individuals. In fact, mathematical treatment of dispersed exchange 
among heterogeneous agents without the coordination of an auctioneer is 
definitely non-linear. Non-linear systems exhibit a much wider range of 
behaviour than linear ones. For example, the motions of a linear dynamical 
system can be coupled, in which case the system could be unable to achieve a 
limit and wander indefinitely in a part of the state space. With a reasoning 
which is typical of the analysis of financial markets, economists can, while 
incurring in some more trouble, partially predict the behaviour of a chaotic 
system by stating that it will not assume given configurations (Albin and 
Foley, 1998, p. 9). However, when non-linearity results in a system 
displaying self-organisation (i.e. the system ability of displaying a regularity 
without any external constraint on the agent’s behaviour) mathematics is less 
useful in providing general theories (e.g. when available, knowledge of the 
underlying dynamics would not lead to predictability of the system behaviour 
since trajectories are highly unstable). Hence, the system should not be 
embedded into a set of equations but, rather, it should be described through 
simulations (Foster, 1995). Agent-based simulations can model agents (the 
components) and their rules of interaction through space and time separately, 
without assuming any a priori overall dynamics rule which, in fact, is 
expected to be the output of the model. 

In Sugarscape (Epstein and Axtell, 1996), agents are non-neoclassical: 
they live finite lives and have different evaluations of the gain extracted from 
trade. New agents enter the market as offspring of the existing population and 
exchanges take place at non-equilibrium prices. This results in a greater 
variance of prices that, in turn, generates horizontal inequality and, above all, 
nothing that resembles equilibrium emerges. This result seems to show that 
alternative representations of agents are not trivial in determining the overall 
behaviour of the system and also highlights how simulation can be used as a 
theoretical instrument to model those facets that are not included in 
traditional mathematical representations (Tesfatsion, 2005)27.  

A further example concerns endogenous change and evolution. In 
equation-based models, the behaviour of the system is portrayed by the 
causal relationships that are present at a single moment in time and, if a 
change intervenes in the taxonomy as initially defined, the model is no longer 
appropriate. In order to overcome this limit, simulations may adopt adaptive 
agents. Adaptive agent’s action can be assigned a value, and she behaves to 
increase this value over time. Adaptation may occur at the micro level (say 

                                                      
27 For a survey of the simulations of the market process see Mirowski (2004). 



www.manaraa.com

118 MAGDA FONTANA 

through learning algorithms) or at the macro level through differential 
survival and reproduction of the most successful individuals. Either way, 
consequences are very hard to anticipate when there are many agents that 
interrelate without top down constraints. Among these consequences, there 
may be a change in taxonomy induced by the relative success (selection) of 
some agents that are better adapted to the environment. A change may consist 
in the characteristic of the agents or in the external environment. Adaptation 
and selection lead to evolution and, yet again, to diverging results from 
traditional economics. While in economics the common thought (Alchian, 
1950; Williamson, 1988; Friedman, 1953) is that evolution should lead to 
ever improving forms of adaptation, simulation contributed to show that an 
evolving system does not always attain optimality and often gets locked onto 
inefficient equilibria (Arthur et al., 1987) and, more interestingly, helped to 
explore the “would be worlds” under different hypotheses of adaptation 
(Chattoe and Gilbert, 1997). 

Finally, simulation has shown that the inclusion of interaction in economic 
processes is not trivial, and, on the contrary, can give interesting insights in 
“sensitive” areas such as game theory (Axelrod, 1997b). For example, 
Epstein (1998) has devised a version of the prisoner’s dilemma in which 
cooperation emerges without assuming repeated play (e.g. tit-for-tat and the 
like) or features (tags) permitting defectors and cooperators to distinguish one 
another. In Epstein’s simulation, agents with finite vision move to random 
sites on a lattice and play, without memory, a fixed inborn strategy of 
cooperate or defect against neighbours. In contrast with the received view, he 
demonstrates that, for a wide range of initial configurations, “cooperators are 
not annihilated but, rather, they endure and predominate” (Epstein, 1998, p. 
37). 

It seems to me that these examples can help in making my point: 
simulation can help in gaining a better understanding and explanation of 
economic facts. I also believe that inclusion of simulation in this science 
should not be realised by persisting in opposing simulation to mathematics 
but simply in recognising the different potentialities of these methodologies. 
Moreover, attention should be paid to the current contrast that, in my opinion, 
lies in the experimental versus axiomatic approach to economics (Mc 
Closkey, 2005).  

6. Concluding Remarks 

In this paper, I have reconstructed the lines of thought that have led to the 
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view that simulation is an autonomous way of expressing theories. In 
economics, this recognition is of special interest because, as it has been 
shown, it involves the ways of thinking about economic phenomena and 
about economics as a science.  

From the simulation perspective, economics is not separable from other 
neighbouring sciences (e.g. history or psychology), and while retaining a 
quantitative approach, there is no attempt of mimicking the hard sciences. 
Possible explanations are opposed to general laws; detailed descriptions of 
runs and sensitivity analysis substitute theorems and statistical significance.  

To conclude few words must be spent on the diffusion of simulations in 
economics. Starting from 1989, economists adopted simulation with a 
growing frequency28. However, this upsurge does not regard all the forms of 
simulations homogeneously, rather it is particularly intense for statistic and 
econometric techniques. The use of other forms of simulation, and especially 
of agent-based simulations, is growing but still represents a minority.  

This is quite intuitive for techniques that have been developed to model 
specific issues (such as microsimulation) whereas, for what concerns multi-
purpose techniques (for instance, multi-agent simulations) a reflection is 
necessary. The prevalence of (statistic and econometric) simulations confirms 
that modelling phenomena within a computer is still perceived as being 
peculiar when applied to social systems. It seems to me that the fact that the 
evolution of simulation has taken place in proximity with economics has 
passed almost unnoticed, and therefore simulation is still considered as 
pertaining to the hard sciences and not suitable for the social ones. A final 
remark has to be made. It is undeniable that its recent origin is responsible for 
simulators to be a minority, but it also depends on the fact that simulators 
scarcely inter-communicate. In fact, in reading through articles that make use 
of simulation it is very rare to find a detailed description of the adopted 
technique. This spreads the idea that simulation is not a crucial part of the 
work and allows for the conclusion that there is a substantial identity among 
techniques, which − as it has been shown − is not true. A better 
communication and integration of simulators and a strong investment in 
discovering and circulating the links between simulation and economic 
theory would certainly help the diffusion and a better understanding of this 
methodology.  

                                                      
28 Fontana (2005). The database is composed of articles, books, working papers, and PhD 

dissertations dealing with simulation published from 1969 to 2004. 
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ABSTRACT 

Economists use different kinds of computer simulation. However, there is little 
attention on the theory of simulation, which is considered either a technology or an 
extension of mathematical theory or, else, a way of modelling that is alternative to 
verbal description and mathematical models. The paper suggests a systematisation of 
the relationship between simulations, mathematics and economics. In particular, it 
traces the evolution of simulation techniques, comments some of the contributions 
that deal with their nature, and, finally, illustrates with some examples their 
influence on economic theory.  
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